
56 The Delphi Magazine Issue 38

The Delphi
CLINIC

Edited by Brian Long

Problems with your Delphi project?

Just email Brian Long, our Delphi
Clinic Editor, on clinic@blong.com

Undocumented Delphi 4

QSince you seem to have
known about various undoc-

umented Delphi things in the past,
have you learnt of anything inter-
esting in version 4 that didn’t make
the manuals, on-line help or
README.TXT file?

AYou’re right in that I happen
to be aware of a certain

amount of undocumented stuff, by
keeping my ear close to the ground
(as well as other places). For previ-
ous examples of undocumented
Delphi features, refer to The Delphi
Clinic in Issues 6, 13 and 36.

Delphi 4 seems to open the flood-
gates with respect to undocu-
mented settings. Table 1 shows
those I have encountered.

In addition to all these useful
things, there are Easter Eggs to
be found throughout the prod-
uct. In Delphi 4’s own About box
you can hold down the ALT key
and then (keeping it held down)
type in the letters that make up
some words: see Table 2.

You may recall that in Delphi 1
you could use Alt+AND to get a wink-
ing picture of Anders Hejlsberg,
the original Delphi author. Now
Alt+CHUCK plays a short video of
Chuck Jazdzewski, the chief R&D
guy now that Anders has left (see
Figure 1).

In the BDE Administrator for BDE
5, you can double-click the About
box icon whilst holding Ctrl+Shift.
Previous versions of the BDE
Administrator required you to
click on the About box’s client area
(ie not the group box).

BDE 5’s API help file (BDE32.Hlp)
also stores developer references.
Look up the topic Credits to see
the names of the development
team members.

Stopping Windows Shutdown

QI can’t seem to set up an
event which would make

sure that Windows doesn’t close
down if my applications are still
open. What’s direct and simple on
this front?

AWell here is an interesting
turnaround. In Issue 36 we

were looking at how to force Win-
dows to close. Now we want to stop
it closing. Anyway, there are two
possibilities here.

Firstly, in all versions of Delphi, a
form’s OnCloseQuery event will fire
when Windows is closing. This
allows you to easily make an event
handler to make an appropriate
decision: set the CanClose

parameter to False to prevent a
closure. However, OnCloseQuery
will be triggered both if Windows is
closed whilst a form is open, and
also when a user closes a form
explicitly. If you want some code
that executes only when Windows
is being closed, then you will need
to write a message handler.

➤ Below: Listing 2➤ Above: Listing 1

procedure TForm1.FormCloseQuery(Sender: TObject; var CanClose: Boolean);
begin
CanClose := MessageDlg('Allow form to close?',
mtConfirmation, [mbYes, mbNo], 0) = mrYes

end;

type
TForm1 = class(TForm)
...
procedure WMQueryEndSession(var Msg: TWMQueryEndSession);
message wm_QueryEndSession;

end;
...
procedure TForm1.WMQueryEndSession(var Msg: TWMQueryEndSession);
const
Prompt = 'Allow program to close, and thereby let Windows session end?';

begin
LongBool(Msg.Result) :=
MessageDlg(Prompt, mtConfirmation, [mbYes, mbNo], 0) = mrYes;

//If it still seems okay to terminate, then call previously installed checking
if LongBool(Msg.Result) then
inherited;

end;

➤ Figure 1

Alt+DEVELOPERS Gives a scrolling list of the Delphi R&D people.

Alt+QUALITY Ggives a list of the Delphi QA team.

Alt+TEAM Gives a list of the developers, QA people, primary
US support, documentation writers, translators etc.

Alt+CHUCK Plays a short video of Chuck Jazdzewski, the chief
R&D guy now that Anders has left.

➤ Table 2

October 1998 The Delphi Magazine 57

Command-Line Parameters

/NS or -NS No Splash Screen.

/HV or -HV Heap Verify. When not doing anything better, the IDE calls its GetHeapStatus memory
management routine. Any heap integrity problems are reported as error codes on the IDE caption
bar. These codes are listed in Delphi’s SOURCE\RTL\SYS\GETMEM.INC.

/HM or -HM Heap Monitor. Debug switch that causes Delphi 4's caption bar to display the number of blocks
and bytes the IDE has allocated. This makes it easier to find IDE memory leaks.

/attach:<PID> As the name implies, allows you to run the IDE debugger and attach it to a specified process
identifier (PID) under Windows NT. As a follow-on from this, the Delphi 4 IDE can also be used as
a Win32 post-mortem, or just-in-time (JIT) debugger. To tell Windows 95 or Windows NT about
this, under \HKEY_LOCAL_MACHINE\ SOFTWARE\Microsoft\WindowsNT\CurrentVersion\AeDebug set
the Debugger value to “C:\Delphi 4.0\ Delphi32.Exe /Attach:%ld”, using an appropriate path
(and yes, that registry path is correct, apparently even if you are using Windows 95). Also, set the
Auto key to 0 to ensure you are prompted before Delphi 4 is started. Once you have done this, the
next time an application crashes, you can press Cancel to have Delphi attach to the broken app.

Registry Settings (all these are relative to HKEY_CURRENT_USER\Software\Borland\Delphi\4.0):

Debugging\Enable Attach Menu Set to a string value of “-1" makes the Run | Attach to Process... menu item visible. This
generates a dialog full of process ids (PIDs) and you can attach the debugger to any of these
processes. This is the same functionality as the /attach command line parameter.

Compiling\ShowCodeInsiteErrors Set to a string value of “-1" causes any Code Insight errors (background compilation errors
spotted when trying to invoke the Code Completion window, or Code Parameters tooltip) to be
displayed in the editor’s message window.

Component Templates\CCLibDir Set to a string value that is some shareable directory, makes component templates be stored and
accessed in that directory, in the file DELPHI32.DCT.

Editor\DefaultHeight Set to a string value dictates the initial height of the editor window.

Editor\DefaultWidth Set to a string value dictates the initial width of the editor window.

Editor\Options\NoCtrlAltKeys Set to a string value of “-1" causes the View | Debug Windows submenu items to have their
shortcuts removed. All these debug menu items have shortcuts involving Ctrl+Alt, eg,
Ctrl+Alt+W for View | Debug Windows | Watches. Many Windows users have desktop
shortcuts set up, which will default to also using Ctrl+Alt shortcuts. You can therefore easily get
ambiguity. For example, you may set up Microsoft Word to launch through Ctrl+Alt+W. In
Delphi 4, you might press Ctrl+Alt+W for the watch window, but you would instead get MS
Word popping up onscreen. Removing these shortcuts from the word go, will avoid you getting
erroneous applications launched instead of debug windows displayed.

Extras\AutoPaletteSelect Set to a string value of “-1" causes the component palette to automatically select the page that
the mouse is moved over, to save you clicking on the tabs.

Extras\AutoPaletteScroll Set to a string value of “-1" means that the contents of a component palette page auto-scroll left
and right when appropriate. When you have more components on a page of the component
palette than can be displayed at any one time, moving the mouse over the left and right scrollers
will automatically scroll one way or the other, rather than you having to click on them.

Globals\PrivateDir Set to a string value that is some shareable directory (eg C:\Delphi4.0\Private), makes various
Delphi bits and pieces come from this directory. These include menu templates (DELPHI32.DMT),
code templates (DELPHI32.DCI), and default project options (DEFPROJ.DOF and DEFPROJ.CFG).

Globals\PropValueColor Set to a string value (eg $FF0000) to make Object Inspector draw property values in this colour.

➤ Table 1

To find out if it is okay to termi-
nate, Windows broadcasts a
wm_QueryEndSession message to all
top level windows. You can write a
message handler to trap that mes-
sage, and possibly tell Windows
directly that closing is not an
option. You can also chain onto the
default handling for this message,
which is a previously installed
wm_QueryEndSession message han-
dler in class TForm. This VCL

message handler is responsible for
ensuring the form’s OnCloseQuery
event is set off when Windows is
trying to end. Listing 1 shows an
OnCloseQuery handler (from
NoClose.Dpr), and Listing 2 has an
implementation of the message
handler (from NoClose2.Dpr).

Program Running
Upon Windows Start-Up

QWhen you shut Windows
with Windows Explorer still

running, and maybe Microsoft
Internet Mail also running, the next
time Windows comes up, those ap-
plications restart as well. How can
I get my programs to do that?

AThere are a number of ways
to do this, but most of them

require more work than is worth-
while. For example, you could add
a shortcut to your program to the
Startup folder as Windows exits,
and make sure you delete it as your
program starts up again. But the

58 The Delphi Magazine Issue 38

best way to do this when running
Windows 95 or Windows NT is the
way that Windows itself uses.
There is a registry key set up for
this. What you need to do is to pro-
grammatically add a string value
for your program under:

HKEY_CURRENT_USER\Software\
Microsoft\Windows\
CurrentVersion\RunOnce

If you write an appropriate value
there when Windows is terminat-
ing, during its next relaunch
Windows will execute all the com-
mands in the RunOnce section after
logging in, and then delete them.
On the other hand, if you add a
value into

HKEY_LOCAL_MACHINE\Software\
Microsoft\Windows\
CurrentVersion\RunOnce,

Windows will execute the program
before logging in (waiting for the
program to finish before doing so).

We saw earlier the use of
wm_QueryEndSession to potentially
stop Windows closing. Another
message, wm_EndSession, gets sent
around to the top level windows in
all applications if Windows is actu-
ally about to close, having found
that no applications objected. A
message handler for this message
can be used to write your pro-
gram’s last will and testament into
the registry before being termi-
nated. Listing 3, from the sample
project Restart.Dpr, contains a
possible implementation.

IDE Keyboard Problem

QI have just installed Delphi 3
on a new machine. When-

ever I use any arrow keys or the
PgUp/PgDn keys I get very strange
behaviour: extra Editor windows
appear. If I hold down the arrow
keys, I get lots of editor windows
displayed. It is driving me crazy, so
I am trying to investigate. How can I
write a program to test that the
keys on my keyboard are sending
the right information to Windows?

AThat sounds very irritating. I
won’t be offering to swap

machines with you J. It sounds
like maybe the keyboard is gener-
ating unexpected characters, or
there is some system-wide macro
system that is replacing the direc-
tion keys with various other key
presses.

Try the simple program in List-
ing 4, then push the various keys
on your keyboard. The textual
names of the keys will be written
onto the form’s caption bar.

GetKeyNameText is an almost
annoyingly convenient API under
these circumstances. It takes the
LParam of a keyboard message
(wm_KeyDown in this case, where the
appropriate field of the message
cracker record that I am using is
called KeyData) and generates an
appropriate descriptive piece of
text based on the current installed
language. This should help clarify
what an average program takes
these cursor movement keys to be.

Figure 2 shows the inanely
simple user interface of the
program after pressing my right
shift key.

Keystroke Interception

QCould you explain how to
stop my PC from beeping af-

ter trapping keys in my form’s
OnKeyDown event? I assume that
whatever I trap there still gets
trapped in some other event, with
the beep indicating ‘Invalid Key’. I
have cleared the key value in the
OnKeyDown handler by setting the
Key parameter to zero but it still
happens? Specific keys I am trying
to trap include Ctrl+S and Alt+S.

AThese keyboard events
seem to be regularly misun-

derstood. Maybe it’s time for a
thorough investigation into how
they work, both under the hood
from the Windows messaging
level, and also from the higher
Delphi event level.

First of all, I would like to say to
any newcomers to Delphi that the
OnEnter event has nothing to do
with the Enter key. It does not fire
when the Enter key is pressed.
Instead it is an event that

➤ Above: Listing 3 ➤ Below: Listing 4

type
TForm1 = class(TForm)
...

public
procedure WMEndSession(var Msg: TWMEndSession);
message wm_EndSession;

end;
...
uses Registry;
...
procedure TForm1.WMEndSession(var Msg: TWMEndSession);
const
Restart = 'Software\Microsoft\Windows\CurrentVersion\RunOnce';

begin
if Msg.EndSession then begin
with TRegistry.Create do
try
//If you want to run your app before any user
//logs in then uncomment the next line of code
//RootKey := HKEY_LOCAL_MACHINE;
if OpenKey(Restart, True) then
//Write a value with an arbitrary name,
//But the full path to your exe as a value
WriteString(Application.Title, Application.ExeName)

finally
Free //Destructor calls CloseKey for me

end;
Msg.Result := 0

end;
inherited

end;

type
TForm1 = class(TForm)
public
procedure WMKeyDown(var Msg: TWMKeyDown);
message wm_KeyDown;

end;
...
procedure TForm1.WMKeyDown(var Msg: TWMKeyDown);
var KeyName: array[0..255] of Char;
begin
if GetKeyNameText(Msg.KeyData, KeyName, SizeOf(KeyName)) > 0 then
Caption := StrPas(KeyName)

else
Caption := 'Oops - it''s not working...'

end;

October 1998 The Delphi Magazine 59

represents the associated control
acquiring input focus. Controls can
gain input focus in many ways,
such as being tabbed to, clicked in,
or whatever (which of course will
trigger many other events). How-
ever, when they gain focus, the
OnEnter event indicates this.

Having got that point clear, the
three keyboard-related events in
Delphi are OnKeyDown, OnKeyUp and
OnKeyPress. These are high level
representations of certain Win-
dows messages sent to the control
that has keyboard input focus,
when keys are pressed on the
keyboard.

Let’s first of all see if we can gain
an understanding as to how all
these messages (about half a
dozen) operate at a Windows level
before concerning ourselves with
the event management and how to
stop keystrokes.

Scenario 1. Let’s take the case of
someone looking at a form with
one edit control on it. The edit has
input focus, and the user presses
the letter S on their keyboard (and
then quickly releases it). The fol-
lowing sequence describes what
happens, message-wise, within
this scenario.

1. When the key is pressed a
wm_KeyDownmessage is placed in the
application’s message queue, with
information indicating that it is
aimed at the edit control.

2. At some point later, maybe
before or after the key is released
(this is unimportant), probably
when the application is not doing
anything much, the application
message processing loop removes
the wm_KeyDown message from the
message queue. The message
processing loop is found in
TApplication.ProcessMessage, a
routine which is called by both
Application.ProcessMessages and
Application.HandleMessage.

3. Before doing anything useful
with the message, ProcessMessage
passes it to an API called
TranslateMessage. The prime job of
this API is to take virtual key mes-
sages (such as wm_KeyDown) and

manufacture an additional charac-
ter message. So now there is
another message in the application
message queue, targeting the edit:
wm_Char. This wm_Char message will
represent the ANSI character ‘s’
(or ‘S’ if Caps Lock was on).

4. The original message is now
passed to DispatchMessage and so
gets sent to the window procedure
inside the edit control for any fur-
ther processing that may be
required.

5. The wm_Char message is
plucked from the message queue
and dispatched to the edit control.
As it goes, this (and any other)
message is also passed through
TranslateMessage, which ignores
most of them.

6. When the key is released a
wm_KeyUp message is placed in the
application’s message queue, with
information indicating that it is
aimed at the edit control.

7. The wm_KeyUp message is
plucked from the message queue
and dispatched to the edit control.

So, in summary, one single key
press generates three messages.

The wm_KeyUp and wm_KeyDown
messages come replete with a vir-
tual key code to indicate which key
was pressed. Virtual key codes are
defined in the 16-bit Delphi
WinTypes unit and the 32-bit Windows
unit. For example, vk_Space (space
bar), vk_Return (Enter key), and
vk_Menu (Alt key). There are con-
stants defined for all the keys on
the keyboard except the
alphanumeric keys. For those keys,
you can get the appropriate value
by passing the appropriate charac-
ter to the Ord function. For letter
keys, use the uppercase letter. So
the virtual key codes for keys 1, 2,
a, and b are Ord(‘1’), Ord(‘2’),
Ord(‘A’) and Ord(‘B’)
respectively.

The wm_Char message is gener-
ated for keys that are mapped to
ASCII/ANSI characters by the key-
board driver (so it won’t occur for
the function keys, for example).
When it is generated, it comes with
a character code for the key that

was pressed. So the state of the
Caps Lock indicator will affect the
character code generated by a
single letter key press (you may
get an upper or lower case charac-
ter). This is in contrast to the
previously described virtual key
code messages, where the virtual
key code for any key is always
consistent.

I know that all this message stuff
might seem reasonably irrelevant
at the moment, but bear with me.
We will examine a few other sce-
narios before seeing how the
events bubble up from these
messages.

Scenario 2. Instead of pressing
just S, the user presses Shift+S,
where Caps Lock is off. With
regard to physical key activity, this
means that Shift is pressed, S is
pressed, S is released and finally
Shift is released. The stream of
messages generated here is:

wm_KeyDown : vk_Shift
wm_KeyDown : Ord(‘S’)
wm_Char : ‘S’ or #83
wm_KeyUp : Ord(‘S’)
wm_KeyUp : vk_Shift

Scenario 3. The user presses
Ctrl+S. This produces these
messages:

wm_KeyDown : vk_Control
wm_KeyDown : Ord(‘S’)
wm_Char : #19
wm_KeyUp : Ord(‘S’)
wm_KeyUp : vk_Control

Notice that wm_Char comes with
character 19 (S is the 19th charac-
ter in the alphabet) because of the
use of the Control key. This is a bit
like what happens at the DOS
prompt. Pressing Ctrl+M gener-
ates ASCII character 13, since M is
the 13th character.

Scenario 4. This final example
assumes Caps Lock is off and Alt+S
is pressed:

wm_SysKeyDown : vk_Menu
wm_SysKeyDown : Ord(‘S’)
wm_SysChar : ‘s’ or #115
wm_SysKeyUp : Ord(‘S’)
[various menu-related messages]
...
wm_KeyUp : vk_Menu

➤ Figure 2

60 The Delphi Magazine Issue 38

Note that since Alt (vk_Menu) is
being used, most of the messages
have now changed. wm_KeyDown is
now wm_SysKeyDown. wm_KeyUp can
now be wm_SysKeyUp. Also wm_Char
changes to wm_SysChar (again it is
TranslateMessage that generates
wm_SysChar messages from appro-
priate wm_SysKeyDown messages).

When a given control has input
focus, an OnKeyDown event will
occur if either wm_KeyDown or
wm_SysKeyDown are received, whilst
an OnKeyUp event will occur if either
wm_KeyUp or wm_SysKeyUp are
received. An OnKeyPress event will
be triggered for a wm_Char message
but not a wm_SysChar message. This
last point becomes important and
causes special case handling to be
required as we will see later on.

Additional functionality pro-
vided by Delphi means that if the
control is on a form whose
KeyPreview property is set True, the
form’s OnKeyDown, OnKeyPress and
OnKeyUp events will be triggered
before those of the actual control.
So the form can sneakily preview
all the key events of the compo-
nents on the form and do extra
stuff such as treat the Enter key like
a Tab key (make the Enter key shift
input focus from control to control
as the Tab key normally does). For
more information on that particu-
lar topic, refer to Intercepting Key-
strokes in The Delphi Clinic from
Issue 8.

So, back to the problem. The
questioner’s plan is to write a
form-wide OnKeyDown handler and,
for certain keystrokes that are
deemed important, special func-
tionality will be executed. How-
ever, since those keystrokes have
been handled by the form, the key

event needs to be ‘killed off’ so the
underlying control won’t see it.
Let’s say the keystrokes in ques-
tion are Escape, Ctrl+S and Alt+S.
Note that you need to be careful of
keystroke clashes. Ctrl+S might be
a shortcut for a menu item. Alt+S
might correspond to the shortcut
of a button, or a label with an asso-
ciated focus control, or might
normally drop down some menu.

In this example’s case, Escape
will be used to change the colour of
the form, Ctrl+S will minimise the
program and Alt+S will write some-
thing on the caption bar. Our first
stab, matching the outline in the
question, is the OnKeyDown handler
shown in Listing 5. You will notice
that the Shift parameter comes in
handy for detecting whether Ctrl,
Alt and/or Shift are currently being
held down.

The trouble with this code
(which can be found in
StopKey1.Dpr) is that, in addition
to doing what we want, it also pro-
duces the irritating beep that is
normally associated with invalid
keypresses, just as the questioner
stated. So what’s going on here?

Well, setting the Key parameter
to zero in an OnKeyDown handler is
designed to prevent the default
behaviour executing. This means
that if you set Key to zero in the
OnKeyDown handler of a form whose
KeyPreview is True, the original con-
trol will not process the originating
wm_KeyDown (or wm_SysKeyDown mes-
sage) meaning that its OnKeyDown
event handler will not execute, and
neither will any default message
handling. If you set Key to zero in a
control’s OnKeyDown handler, it will
execute your code in the event
handler, but then will not do any
extra message handling that it
would normally have done.

Most people assume that this
means the keystroke is thrown
away. This is not true. Remember
that the key down action results in
two messages in many cases: the
wm_[Sys]KeyDown message and a
wm_[Sys]Char message. So you
might have stemmed the execu-
tion flow of one message, but the
other still waits in the wings to take
over.

In fact most key responses (like
the default beep when unrecog-
nised) come from the wm_Char mes-
sage handling. So the more correct
way to pick up a keystroke and
then pretend it didn’t occur is to
use the OnKeyPress event, where
possible. The principal exceptions
to this rule are the keys that don’t
generate a wm_Char message (such
as function keys).

There are possible problems to
be seen in using an OnKeyPress
event handler. If we look at the
event types (in Listing 6), we
should see what these might be.
Firstly, OnKeyPress doesn’t take a
Shift parameter to indicate which
of the standard shift-like keys are
down. To overcome this problem
we can use GetKeyState to find the
state of each key individually.
Alternatively we could use
GetKeyboardState to find them all
out at once. Listing 7 has a utility
routine that calls GetKeyboardState
and then manufactures a value of
type TShiftState, just like the Shift
parameter. You can see in the list-
ing that if the high bit of the array
element corresponding to a key’s
virtual key code is set, then the key
is down.

Another issue between OnKey-
Down and OnKeyPress is that the Key
parameter is now a Char, to corre-
spond with the character code
that comes along with a wm_Char
message. So character case needs
to be taken into account (hence
the use of the UpCase function), as
does parameter type (hence the
use of the Chr function).

StopKey2.Dpr tries to fix the
problems in StopKey1.Dpr by
moving the existing key handling
into the form’s OnKeyPress event
handler, but to prove a point, F2 is
now trapped in the OnKeyDown
handler (see Listing 8).

➤ Listing 5

procedure TForm1.FormKeyDown(Sender: TObject; var Key: Word;
Shift: TShiftState);

begin
{ Check for Escape }
if (Key = vk_Escape) and (Shift = []) then begin
Color := RGB(Random(256), Random(256), Random(256));
Key := 0

end;
{ Check for Ctrl+S or Alt+S }
if (Key = Ord('S')) and ((Shift = [ssCtrl]) or (Shift = [ssAlt])) then begin
if Shift = [ssCtrl] then
Application.Minimize

else
Caption := 'Alt+S was pressed at ' + TimeToStr(Time);

Key := 0
end

end;

October 1998 The Delphi Magazine 61

As was pointed out earlier, when
a character message is generated
for a Ctrl+letter combination, the
character code matches the letter’s
position in the alphabet (Ctrl+M
generates #13, Ctrl+A generates
#1). To transform a given letter into
this modified value, the simple util-
ity routine GetCtrlLetter is used in
the program.

Things are getting better now.
F2, Ctrl+S and Escape are all
trapped successfully by the code,
but Alt+S stubbornly insists on
beeping. The problem here was
hinted at during the exploration of
the underlying message model.
Even though OnKeyDown is triggered
for both wm_KeyDown and
wm_SysKeyDown messages and
OnKeyUp is triggered for both
wm_KeyUp and wm_SysKeyUp mes-
sages, OnKeyPress is only generated

for wm_Char and not wm_SysChar.
Since Alt+S actually generates a
wm_SysChar message, we are rather
stuck now.

Onto the next possibility. To
trap Alt+letter combinations you
can write new components based
on the ones you wish to use, and
write a message handler for
wm_SysChar in each one. But that
would be enormously tiresome.

Another possibility would be to
write a message handler in the
form for wm_MenuChar. This is a mes-
sage sent to the form when
Alt+letter is pressed in any control
on the form. If you handle this mes-
sage, the Windows API help sug-
gests that returning a value of 1 in
the high word is the most harmless
option. StopKey3.Dpr is just the
same as StopKey2.Dpr, but the
Alt+S handling has moved into a
form-based message handler (see
Listing 9).

Here’s another idea for the
Alt+letter shortcuts. Add a button
to the form, set its TabStop prop-
erty to False, and give it a caption
with the appropriate letter pre-
ceded by an ampersand. Now
move the button off the left hand
side of the form so it cannot be
seen (set its Left property to a
large negative value). The button
can now be given an OnClick
handler as required.

This approach has been well
used in the days when Inprise were
Borland. For example, every copy
of Database Desktop has used a
hidden button on its About box
with a caption of &I. This means
that Alt+I does something undocu-
mented, which is to show the ver-
sion number of the version of BDE
being used. This was also used in
Turbo Pascal for Windows,
WinSight and Resource Workshop.
Simple idea, huh?

Delphi 4 introduces another
possibility with a new form event,
OnShortCut. This is a new form
event that allows you to pick upon
keystroke combinations and con-
sider them form-wide events.
StopKey4.Dpr uses the OnShortCut
event handler that can be found in
Listing 10. Notice the use of the
Forms routine KeyDataToShiftState
to translate message-supplied key-
stroke information into a
TShiftState variable.

And now for a final, generic,
option. As if you haven’t read
enough! Consider, if you will, the
Delphi Editor, the Object Inspec-
tor, the Watch window, in fact
many windows in the IDE. They all
react to Alt+F10 to bring up their
popup menu. This isn’t done by
writing wm_MenuChar message han-
dlers. Instead they use hidden
menu items. If you want to react to
a keystroke globally across a form,
add a menu item to your form’s
main menu, give it the shortcut
you want to react to, then set its
Visible property to False. Even if
you don’t want a menu at all on
your form, just use one to house
these hidden convenience items.
Alternatively, add lots of items to a
dummy menu, set the dummy
menu to be invisible and then
forget about the individual items.

➤ Below: Listing 7

➤ Listing 8

➤ Above: Listing 6

TKeyEvent = procedure (Sender: TObject; var Key: Word; Shift: TShiftState)
of object;

property OnKeyDown: TKeyEvent;
type TKeyPressEvent = procedure (Sender: TObject; var Key: Char) of object;
property OnKeyPress: TKeyPressEvent;

function GetShiftState: TShiftState;
var KeyState: TKeyboardState;
begin
Result := [];
GetKeyboardState(KeyState);
if KeyState[vk_Shift] and $80 <> 0 then Include(Result, ssShift);
if KeyState[vk_Control] and $80 <> 0 then Include(Result, ssCtrl);
if KeyState[vk_Menu] and $80 <> 0 then Include(Result, ssAlt);
if KeyState[vk_LButton] and $80 <> 0 then Include(Result, ssLeft);
if KeyState[vk_RButton] and $80 <> 0 then Include(Result, ssRight);
if KeyState[vk_MButton] and $80 <> 0 then Include(Result, ssMiddle);

end;

function GetCtrlLetter(Ch: Char): Char;
begin
Result := Chr(Ord(Ch) - Ord(Pred('A'))) { Take away one less than letter A }

end;
procedure TForm1.FormKeyDown(Sender: TObject; var Key: Word; Shift: TShiftState);
begin
if (Key = vk_F2) and (Shift = []) then begin
Caption := 'F2 was pressed at ' + TimeToStr(Time);
Key := 0

end;
end;
procedure TForm1.FormKeyPress(Sender: TObject; var Key: Char);
var Shift: TShiftState;
begin
Shift := GetShiftState;
{ Check Escape }
if (Key = Chr(vk_Escape)) and (Shift = []) then begin
Color := RGB(Random(256), Random(256), Random(256));
Key := #0

end;
{ When Ctrl+letter is pressed, the character code is the }
{ position in the alphabet held by the uppercase letter }
if (Key = GetCtrlLetter('S')) and (Shift = [ssCtrl]) then begin
Application.Minimize;
Key := #0

end;
if (UpCase(Key) = 'S') and (Shift = [ssAlt]) then begin
Caption := 'Alt+S was pressed at ' + TimeToStr(Time);
Key := #0

end
end;

62 The Delphi Magazine Issue 38

StopKey5.Dpr does it in this
manner. Each menu item has an
appropriate simple OnClick han-
dler. The code should be pretty
obvious. If it isn’t, refer to the
sample project on this month’s
disk.

Now let’s summarise. So
OnKeyDown can successfully process
and swallow keystrokes that don’t
have a corresponding ASCII/ANSI
representation. OnKeyPress can
deal with keystrokes that have do
have a mapping into the ASCII/ANSI
character set: this includes both
single character key presses and
those pressed in conjunction with
the Ctrl key. Alt+key combinations
can be dealt with by a wm_MenuChar
message handler, or a hidden
button.

In general, though, a consistent
way could be to use a hidden menu
item with a suitable shortcut.

Anyone not had quite enough of
this keyboard message analysis
yet? I suspect most readers have
left by now! Anyway, if you’re bold
and brave enough and want to
check up on why some keys com-
pletely circumvent the standard
keyboard events (for example the
up and down cursor keys) and also
how to deal with this situation,
refer back to Lost Messages in The
Delphi Clinic in Issue 20. Basically,
the VCL inserts extra keyboard
processing (and potential message
swallowing) between steps 2 and
3) as listed above.

Dynamic Fonts Update

QIn Issue 18 there was an arti-
cle by Stewart McSporran

about dynamic fonts and you also
mentioned dynamically loaded
fonts in The Delphi Clinic in Issue
35. I have tried using the pre-
scribed techniques of Create-
ScalableFontResource and AddFont-
Resource unsuccessfully in Delphi
1. I used the sample TrueType font
supplied by Stewart, inserted a call
to AddFontResource(‘Acce.ttf’)
and then broadcast a
wm_FontChange message. Then I
used Memo1.Font.Name := ‘Acce’ in
order to select the font into my
memo, but it didn’t work. Can you
enlighten me?

AThe key point here is that the
font name is not the same as

the font’s filename. You can find its
name by properly installing the
font on your machine temporarily
(from Control Panel’s Fonts op-
tion) and seeing what comes up.
Stewart’s ACCE.TTF font file con-
tains the Accent SF font. So your
code statement needs to be
changed to Memo1.Font.Name :=
‘Accent SF’.

Erratic MDI Menu Update
In Issue 35, when discussing
problems with menus in MDI
applications, I used the API
LockWindowUpdate. From various
sources I have now come to the

conclusion that this API is basi-
cally very unpopular due to the
excessive flickering it causes. It
seems the general consensus is to
use the wm_SetRedraw message
instead. Thanks go to Ken Strong
on CIX for bringing this to my
attention. After looking further
into this it seems Inprise R & D’s
own Danny Thorpe also endorses
this as the way to go and in fact The
Delphi Magazine has already
presented this information in
Mike’s Corner in Issue 30.

So, some code that looks like
Listing 11 can be changed to
Listing 12 for better performance.

➤ Below: Listing 10➤ Above: Listing 9

type
TForm1 = class(TForm)
public
procedure WMMenuChar(var Msg: TWMMenuChar); message wm_MenuChar;

end;
...
procedure TForm1.WMMenuChar(var Msg: TWMMenuChar);
begin
if UpCase(Msg.User) = 'S' then begin
Caption := 'Alt+S was pressed at ' + TimeToStr(Time);
LongRec(Msg.Result).Hi := 1 { I've handled this }

end else
inherited { I haven't handled this }

end;

procedure TForm1.FormShortCut(var Msg: TWMKey; var Handled: Boolean);
var Shift: TShiftState;
begin
Shift := KeyDataToShiftState(Msg.KeyData);
if (Msg.CharCode = vk_F2) and (Shift = []) then begin
Caption := 'F2 was pressed at ' + TimeToStr(Time);
Handled := True

end;
if (Msg.CharCode = vk_Escape) and (Shift = []) then begin
Color := RGB(Random(256), Random(256), Random(256));
Handled := True

end;
if (UpCase(Chr(Msg.CharCode)) = 'S') and (Shift = [ssCtrl]) then begin
Application.Minimize;
Handled := True

end;
if (UpCase(Chr(Msg.CharCode)) = 'S') and (Shift = [ssAlt]) then begin
Caption := 'Alt+S was pressed at ' + TimeToStr(Time);
Handled := True

end
end;

➤ Below: Listing 12➤ Above: Listing 11

{ Halt any further form updates }
LockWindowUpdate(SomeForm.Handle)
...
{ Various update operations that won't be drawn just yet }
...
{ Cause window to redraw, albeit with a certain amount of flicker }
LockWindowUpdate(0);

{ Halt any further form updates }
SomeForm.Perform(wm_SetRedraw, 0, 0)
...
{ Various update operations that won't be drawn just yet }
...
{ Cause window to redraw }
SomeForm.Perform(wm_SetRedraw, 1, 0)
{ Could just use SomeForm.Refresh, but this might be better }
RedrawWindow(SomeForm.Handle, nil, 0, rdw_Frame + rdw_Invalidate +
rdw_AllChildren + rdw_NoInternalPaint)

	Undocumented Delphi 4
	Stopping Windows Shutdown
	Program Running Upon Windows Start-Up
	IDE Keyboard Problem
	Keystroke Interception
	Dynamic Fonts Update
	Erratic MDI Menu Update

